2020

Springfield Reservoir Study of Aquatic Recreation Supply and Demand

SPRINGFIELD CITY WATER, LIGHT, AND POWER (CWLP) REGIONAL AQUATIC RECREATION SUPPLY AND DEMAND REPORT

Kenneth A. Kriz, Ph.D. J. Travis Bland, Ph.D. Laura L. Payne, Ph.D.

CONTENTS

List of Tables	ii
List of Figures	iii
Introduction	iv
Chapter 1: Supply Analysis	1
Study Background	1
Location	2
Findings of the Water Recreation Supply Inventory	4
Chapter 2: Demand Analysis	8
Survey Analysis	8
Activity Usage Analysis	
Miles Traveled Analysis	14
Number of Days Analysis	
Number of People Involved Analysis	
Satisfied with Aquatic Recreation Options Analysis	
Importance in Quality of life Analysis	20
Latent Demand Analysis	20
Visitor and Required Acreage Calculations	24
Total Estimated Required Acreage	
Recreation Demand Statistical Model	
Forecast of future Demand	
Forecasts of Required Acreage	
Calculation of Unmet Demand	
Appendix 1: Activity Analysis	40
Activity Counts	40
Activity Analysis by Age Group	
Activity Analysis by Parental Status	57
Appendix 2: Regression Analysis Results for Miles Traveled and Days Involved in	Activities 62
Miles Traveled	62
Days Involved	63
Appendix 3: Visitor and Required Acreage Calculations	64
Sailing	64

Motorboating	65
Boarding Activities	66
Jet Skiing Activities	67
Fishing	68
Swimming in an Outdoor Pool	69
Swimming in a Lake or River	70
Waterfowl Hunting	71

LIST OF TABLES

Table 1. Study Area Counties and Populations3
Table 2. Public Lakes and Rivers Available for Recreation within 53 Miles of Springfield, Illinois. 5
Table 3. Private Lakes within the Study Area7
Table 4. Results from Logistic Regression of Activity Engagement
Table 5. Distribution of Miles Traveled Responses
Table 6. Results of Linear Regression of Miles Traveled, by Activity and Overall
Table 7. Count of Responses, Days Spent in each Activity 16
Table 8. Results from Ordered Logistic Regression of Number of Days Engaging in an Activity . 17
Table 9. Analysis of Number of People Involved in Activities 17
Table 10. Results of Linear Regression of Number of People Involved in Activities
Table 11. Results of Ordered Logistic Regression on Satisfaction with Flatwater Recreation
Opportunities
Table 12. Analysis of Quality of Life Questions
Table 13. Analysis of Factors Preventing Greater Usage of Activities
Table 14. Analysis of Reasons for Not Engaging in an Activity 23-25
Table 15. Canoeing/Kayaking Visitor and Acreage Calculations
Table 16. Assumptions Used in Required Acreage Calculations
Table 16. Assumptions Used in Required Acreage Calculations
Table 16. Assumptions Used in Required Acreage Calculations

Table 20. Results from Monte Carlo Estimation of the Annual Number of Day Use Visits, 100,	000
iterations	. 33
Table 21. Projected Values of Variables Impacting Aquatic Recreation Demand, 2020-2030	. 34
Table 22. Results from ARDL Regression of Personal Income on Population, 1972-2018	. 35
Table 23. Forecasts of Required Acreage, 2020-2030	. 37
Table 24. Estimates of Unmet Demand, 2020-2030	. 38

LIST OF FIGURES

Figure 1. Map of the Study Area for the Water-Recreation Supply Inventory	. 2
Figure 2. Percent of Survey Respondents by Gender	. 8
Figure 3. Percent of Survey Respondents by Age	. 9
Figure 4. Percent of Survey Respondents by Annual Household Income	. 9
Figure 5. Percent of Survey Respondents by Parental Status	10
Figure 6. Percent of Survey Respondents by Number of Children	10
Figure 7. Activity Usage by Survey Respondents	11
Figure 8. Relationship between Reported Canoeing or Kayaking and Age of Respondent	12
Figure 9. Satisfaction with Available Aquatic Recreation Options	19
Figure 10. Desire to Engage More Often by Activity	21
Figure 11. Location of Corps Projects in the Dataset	30
Figure 12. Number of Reservoirs by Total Day Use	31
Figure 13. Number of Reservoirs by Division	32
Figure 14. Results of ARDL Regression and Forecast through 2030	36

Acknowledgements: We appreciate the leadership and contributions from the USACE Team comprised of Jim Kelley, Trevor Popkin and Ward Lenz. Many thanks to Angela Love, Bill Elzinga and Karen Boulware from Wood for their input and feedback throughout the process. Many graduate students contributed to this project and we would like to thank Jaesung An, Wonjin Jeong, Miry Chung and Ryan Hancock for their contributions to this project.

INTRODUCTION

The City of Springfield, Illinois has developed a supplemental water supply project to supplement the city's (and their regional water customers) current water supply during extreme periods of drought. Numerous supplemental water supply alternatives have been evaluated in a Supplemental Environmental Impact Statement (SEIS) being prepared for the City of Springfield by a 3rd party contractor under the direction of the U.S. Army Corps of Engineers (USACE). The project is known as the Springfield Supplemental Water Supply Project.

The City of Springfield requested that aquatic outdoor recreation, specifically for fishing, fishing tournaments, waterfowl bird watching, boating, kayaking, canoeing and water skiing, be included in the project's purpose and need for screening of alternatives. The demand analysis also included swimming and waterfowl hunting. Although waterfowl hunting is not dependent on a flat water reservoir, about 2% of survey participants reported they hunt waterfowl at lakes. Similarly, swimming is not dependent on a flat water reservoir, yet 29% stated they swim in lakes/rivers.

A team of researchers from the University of Illinois was hired under the direction of the USACE, to complete a recreation study to determine the current recreation supply, and the current and the future needs and demands for aquatic recreation to see if they are significant enough for recreation to be added as a screening consideration of alternatives. The methods and results for the assessment of aquatic recreation demand are presented in this report. Chapter one includes the methods and findings for the recreation supply study. Chapter two describes methods and results for aquatic recreation activity use, miles traveled for recreation, satisfaction with existing aquatic recreation, importance of aquatic recreation, latent demand, required acreage, recreation demand, forecasted demand, forecasted required acreage, and calculation of unmet demand.

One area that cannot be forecasted now is the effect that Covid-19 and the associated recession will have on the future demand for aquatic-based recreation in the Springfield area. While we know that Covid-19 has caused a surge in outdoor recreation activity (especially walking and bicycling), it is unclear how these two major events will affect future demand for aquatic-based recreation (Dolesch, 2020; Roth, 2020; Venton et al., 2020). Thus, the effects of Covid-19 and the recession could not be accounted for in the survey analyses and estimations of demand.

CHAPTER 1: SUPPLY ANALYSIS

STUDY BACKGROUND

The purpose of this inventory was to assess the availability of water-based recreation opportunities within about a 50-mile radius of Springfield, Illinois. The rationale for establishing the 53-mile radius for the assessment is based upon recreationists' willingness to drive up to one hour from home for a day trip to engage in water-based recreation. Moreover, several key selection criteria were included in researching the availability of lakes and rivers. Selection criteria included:

- 1. All publicly owned lakes, ponds, and rivers. Private lakes are indicated in the table since they do serve some segments of the population, but are not included in the calculations;
- Availability of at least one of the following water-based recreation activities: fishing, fishing tournaments, waterfowl bird watching, boating, kayaking, canoeing and water skiing; and
- 3. In the event a lake was cut-off at the perimeter of the 53-mile radius, a decision was made to include the entire body of water in the supply inventory.

The supply of water-based recreation resources was assessed with a two-pronged approach. An online mapping tool called Map Developers, was used to draw a radius map from the center of Springfield, Illinois that includes the entire area within a 53-mile radius of Springfield. This designated area was used to assess the availability of lakes and rivers for water-based recreation (see Figure 1). Moreover, acreage was not readily available for the rivers (i.e., Sangamon, Illinois, Spoon) and a few smaller lakes. Thus, the acreage for these bodies of water was estimated using the Google Earth measurement tool. Numerous resources were used to identify water resources within the study area. These included the Illinois Department of Natural Resources (IDNR) fishing directory, state park and recreation area listing, websites of municipalities, reports (i.e., Outdoor Recreational Needs and the Hunter Lake Opportunity, State Conservation, Outdoor Recreation Plan), and other fishing and boating websites such as All About Fishing (aa-fishing.com).

LOCATION

Seven activities were included in this supply inventory: 1) boating, 2) fishing, 3) waterfowl bird viewing, 4) canoeing, 5) kayaking, 6) skiing, and 7) fishing tournaments. Other activities are available at many of these lakes and rivers including picnicking, hiking, camping, and swimming.

The region represented in the water recreation supply inventory includes the following 16 counties. Each county and its corresponding population are outlined in Table 1 below.

Table 1. Study Area Counties and Populations

County Name	Population
Cass	12,260
Christian	32,304
De Witt	15,769
Fulton	34,340
Greene	13,044
Logan	28,816
Macon	104,009
Macoupin	44,926
Mason	13,565
Menard	12,196
Montgomery	28,601
Morgan	33,658
Sangamon	194,672
Schuyler	6,907
Scott	4,951
Shelby	21,741

FINDINGS OF THE WATER RECREATION SUPPLY INVENTORY

In developing the supply of water-based recreation, we assessed the acres of water resources for recreation, the county the body of water resides in, and available water-based recreation activities that take place at each site.

Across the 16 county study area, there is at least 57,503 total acres of public lakes and rivers available for water-based recreation (Table 2). Of these, there are at least 45,874 acres of lakes and 11,699 acres of rivers in the study area. Specifically, the 76-mile stretch of the Illinois River within the study area accounts for 7,776 acres and the 120-mile segment of the Sangamon River accounts for 3,840 acres of water. The Spoon River, which is considerably smaller than the Sangamon and Illinois Rivers, accounts for 4.2-miles and 83 acres of water. These lakes and rivers provide numerous aquatic recreation activities including fishing, boating, canoeing, kayaking, waterfowl bird viewing and swimming (Table 2). Other activities at some of these sights include picnicking, camping, wildlife viewing, hunting and hiking. The water-based recreational resources are all located within 53-miles of Springfield, Illinois.

The largest lakes in the study area include Lake Shelbyville (11,100 acres), Clinton Lake (4,900 acres), Lake Springfield (3,866 acres), Lake Chautauqua/Mud Lake (3,200 acres) Sangchris Lake (3,022 acres), and Lake Decatur (2,800 acres). An additional nine lakes each provide between 1,000 and 2,000 acres of water-based recreation (Lake Lou Yaeger, Crain/Chain/Stafford/Stewart, Miserable/Rice, Glen Shoals, Anderson, Swan/Jack/Grass, Big/Goose Lake, Coffeen, Taylorville). The rest of the lakes (N=17) offer between 21 and 840 acres of water usable for recreation.

Four additional private lakes were also noted within the study area that account for a total of 667 acres (Table 3). However, since they are private and not accessible by the public, they were excluded from the total water-based recreation supply calculation. The private lakes were Sunset Lake, Lake Catatoga, Franklin Waverly Outing Club Lake, and Clear Lake Sand and Gravel. Private lakes account for less than one percent of all water resources within the 53-mile radius of the City of Springfield. This indicates that most of these water resources can be accessed and enjoyed by the public. Table 2 below summarizes all of the lakes and rivers in the study area.

 Table 2. Public Lakes and Rivers Available for Recreation within 53 Miles of Springfield, Illinois

Lake	County Number of Activities				
		Acres			
Waverly Lake	Morgan	112	Fishing		
			Boating		
Lake Jacksonville	Morgan	442	Fishing		
			Boating		
			Skiing		
			Swimming		
Jim Edgar Panther	Cass	270	Fishing		
Creek State Fish and			Boating		
Wildlife Area			Canoeing		
(Prairie, Gridley &			Kayaking		
Drake Lakes)			Waterfowl viewing		
Virginia City Reservoir	Cass	21	Fishing		
			No motors		
			Has Boat Ramps		
Meyers Pond	Cass	384	Fishing		
			Boating		
Treadway Lake	Cass	346	Fishing		
			Boating		
	_		Waterfowl viewing		
Big Lake & Goose Lake	Cass	1690	Electric boating only		
			Fishing		
Illinois River	Multiple	7,776 acres	Fishing		
		()	Boating		
		(based on 76	Skiing		
		miles of river	Кауакіпд		
		within study	Canoeing		
	Cohundor	area)			
Сиггу Lake	Schuyler	512	Fishing		
Cohuny Durch Lolvo	Cohundor	101			
Schuy-Rush Lake	Schuyler	191	Roating		
Crana Chain Stafford	Schuylor	1 700	Eiching		
and Stowart Lako	Schuyler	1,700	Roating		
and Slewart Lake			Waterfowl hird viewing		
Ouiver Lake	Mason	154	Fishing		
	Widson	134	Boating		
			Waterfowl viewing		
Jack. Swan & Grass	Mason	1,113	Fishing		
Lake	in a soft	1,110			
Matanzas Lake	Fulton	840	Fishing		
			Boating		
			0		

Lake	County	Number of	Activities
		Acres	
Anderson Lake	Fulton	1,134	Fishing
			Boating
Duck Island Lake	Fulton	123	Fishing
(main and little lake)			Canoe
			Kayaking
Miserable Lake \rightarrow Rice	Fulton	1,383	Fishing
Lake			Waterfowl viewing
Spoon River	Fulton	83	Fishing
Gillespie Lakes	Macoupin	266	Fishing
Old City and New City			Boating
Lakes			Swimming
Lake Carlinville	Macoupin	355	Fishing
			Boating
			Kayaking
			Canoeing
			Waterfowi viewing
Popuer Lake	Macounin	50	Fishing
Deaver Lake	Macoupin	55	Roating
			Swimming
Mt Olive Lake	Macounin	36	Fishing
WILL OILVE LAKE	Macoupin	50	Flectric motor boats only
Otter Lake	Macounin	765	Fishing
	Macoupin	705	Boating
Lake Hillsboro	Montgomery	100	Bank Fishing
	montgomery	100	
Lake Lou Yaeger	Montgomery	1,400	Fishing
	C <i>i</i>		Boating
			Swimming
Coffeen Lake	Montgomery	1,070	Fishing
Lake Glenn Shoals	Montgomery	1,250	Fishing
			Boating
			Canoeing
			Kayaking
			Swimming
			Water skiing
Sangchris Lake State	Christian and	3,022	Fishing
Park	Sangamon		Boating
			Archery
Taylorville Lake	Christian	1,200	Fishing
			Boating
			Water skiing
			Swimming

Lake	County	Number of Acres	Activities
Lake Shelbyville	Shelby and Moultrie	11,100	Fishing Boating Swimming
Sangamon River	Multiple	3,840 acres (based upon 120 miles of river)	Fishing Boating Canoeing Kayaking
Clinton Lake	DeWitt	4,900	Fishing Boating Swimming
Lake Decatur	Macon	2,800	Fishing Boating Sailing Jet skiing Picnicking
Mud Lake/Lake Chautauqua	Sangamon	3,200	No boating ramp Fishing
Lake Springfield	Sangamon	3,866	Fishing Boating Swimming
Total Acres of Water Resources		57,503	

Table 3. Private Lakes within the Study Area

Lake	County	Number of Acres	Activities
Sunset Lake	Macoupin	173	Fishing Boating Swimming
Lake Catatoga	Macoupin	66	Fishing Boating Swimming
Franklin Waverly Outing Club Lake	Morgan	44	Fishing Boating
Clear Lake Sand and Gravel	Sangamon	384	Fishing
Total Acres of Water Resources		667	

CHAPTER 2: DEMAND ANALYSIS

SURVEY ANALYSIS

The Survey Research Office at the University of Illinois at Springfield (SRO-UIS) administered a survey during the period June 8-18, asking respondents questions regarding their usage patterns of aquatic recreation facilities, the desire to use the facilities more often, and barriers to their using the facilities. The SRO utilized a panel of respondents recruited by Marketing Systems Group, taken from a pool of individuals located within 50 miles of Springfield.

The panel consisted of 871 respondents of which 636 of the respondents completed or partially completed the survey. Partially completed responses and responses that appeared to be spurious were removed (e.g., someone claiming to have gone Canoeing with 10,000 other people on a trip). After this removal, 625 survey responses were analyzed for an effective response rate of 71.76%.

Figures 2 through 6 show the descriptive statistics for the socioeconomic and demographic characteristics of the sample. As shown in Figure 2, the sample was somewhat skewed toward females. As we will discuss below, we gathered data on the 50-mile radius surrounding Springfield. The gender split for that population is 50.1% female and 49.9% male. The survey sample is 66.1% female, 33.4% male, and 0.5% other. We will therefore need to make corrections to reported probabilities of engaging in activities if gender appears to affect participation in activities. We discuss those corrections in the section on Visitor and Required Acreage Calculations.

Figure 2. Percent of Survey Respondents by Gender

Figure 3 shows the distribution of respondents by age. For this variable, the median age of sample respondents falls into the 35 to 44 age range. This reflects the population very well, as the median age of residents within the 50-mile radius of Springfield is 41.9 years.

Figure 3. Percent of Survey Respondents by Age

Figure 4 shows the distribution of annual household income. This variable for the sample is slightly less than the population average. The average for households within a 50-mile radius of Springfield is \$55,579, whereas the median household income in the sample is in the \$30,001 – 45,000 range. This is another variable for which we will be adjusting our results.

Figure 5 shows the distribution of respondents by parental status. The percentage of survey respondents who are parents is 37.1%, which is slightly higher than the 30.1% of residents in the study area (within a 50-mile radius of Springfield). Adjustments will be made for this variable. Figure 6 shows the number of children for those respondents who reported that they are parents. The median of two children is the same as the population in the 50-mile region.

ACTIVITY USAGE ANALYSIS

The survey asked questions about the usage of aquatic facilities for nine categories of activities. The activity with the highest usage, as depicted in Figure 7, was Swimming in an Outdoor Pool. Nearly two-thirds of respondents indicated that they had gone Swimming in an Outdoor Pool in the past 12 months. Similarly, almost half of the respondents indicated that they had engaged in Fishing and over one-quarter indicated that they had gone Swimming in a Lake or River. Canoeing and Motorboating showed significant but lower usage with 16% and 10%, respectively. The respondents indicated usage of less than 5% for the remaining activities. The percentages reported are "base" probabilities and represent the likelihood that a given person in the region (i.e., a 50-mile radius from Springfield) will engage in an activity during a given year. Each percentage, then, is a measure of the demand for using an aquatic facility for said activity when nothing else is known about the population. However, we did collect demographic and socioeconomic information about the respondents. Using this information, we can divide the sample and analyze these data based on specific characteristics.

Figure 7. Activity Usage by Survey Respondents (n = 625)

Activity Split Analysis

Dividing the sample by the socioeconomic and demographic characteristics, we offer an analysis of the activity "splits." For example, Figure 8 depicts the responses of those who reported Canoeing or Kayaking in the last 12 months compared to their age in the form of a heat map. The age categories are as follows: 1 = 18 to 24 years old; 2 = 25 to 34 years old; 3 = 35 to 44 years old; 4 = 45 to 59 years old; 5 = 60 to 74 years old; and 6 = 75 years and older. This heat map shows the relative number of responses in each age category compared to

participation in the activity Canoeing or Kayaking. The numbers on the right side indicate the percentage of each age group that had gone Canoeing or Kayaking in the last 12 months. There is a clear pattern in the responses, as younger people are more likely to have gone Canoeing or Kayaking.

Figure 8. Relationship between Reported Canoeing or Kayaking and Age of Respondent

Note: There were no respondents in the 75 years and older category answering that they had gone Canoeing or Kayaking in the last 12 months.

While the numbers seem clear, an important question remains. To what extent does the observed pattern represent the larger population of people living within 50 miles of Springfield? To answer this question, we need to "test" the data to rule out the possibility that a non-representative sample was the reason for the observed pattern. We use the "chi-squared test" that measures the association between two variables that are coded into categories. Our test for the relationship between age and engaging in Canoeing or Kayaking indicates that it is statistically significantly likely that the observed relationship would exist in the overall population.¹

We carried out this type of analysis for the five activities that had more than 10% usage (tests for variables with less than 10% are inherently biased due to the low level of "ones" in the sample) and for each socioeconomic/demographic variable. The analysis of the activity "splits" tells us, in general, what socioeconomic and demographic variables affect the probability or likelihood of engaging in an activity. However, it does not tell us how much each variable affects

¹ The Pearson χ^2 test statistic was 14.1077 with 5 degrees of freedom (p<0.02). p-values less than .05 indicate statistically significant results at academically acceptable levels. Full results for all split analyses are provided in Appendix 1.

the probability. Further analysis is needed so that we can control for situations where multiple variables affect the probability of engaging in an activity. For example, since both age and income affect the probability of Canoeing and Kayaking, if age and income are related, any individual estimate of age or income will contain noise from the effect of the other variable.

We therefore ran logistic regression analyses to analyze when respondents had engaged in an activity (Table 4).² The results from this analysis tells us the increased or decreased probability of engaging in an activity depending on the respondent's characteristics. The figures in italics in the table indicate the change in probability for each unit increase in a variable.

Variable/	Canoeing/			Swimming in an Outdoor	Swimming in a Lake or
Activity	Kayaking	Motorboating	Fishing	Pool	River
Constant	-0.898**	-2.986***	0.309	0.632*	-0.131
	(-2.629)	(-6.379)	(1.180)	(2.291)	(-0.461)
Income	0.223***	0.267***	-0.082	0.197***	0.110*
	(3.581)	(3.603)	(-1.737)	(3.82)	(2.111)
	0.027	0.022	-0.020	0.045	0.022
Age	-0.184	0.125	-0.027	-0.295***	-0.343***
	(-1.765)	(1.004)	(-0.337)	(-3.512)	(-3.774)
	-0.022	0.011	-0.007	-0.067	-0.069
Gender	-0.283	-0.083	-0.349*	-0.08	0.071
	(-1.22)	(-0.297)	(-2.005)	(-0.436)	(0.364)
	-0.036	-0.007	-0.087	-0.018	0.014
Parent	-0.118	0.174	0.444**	0.389*	0.286
	(-0.510)	(0.629)	(2.600)	(2.104)	(1.539)
	-0.014	0.015	0.110	0.086	0.058
Psuedo-R ²	0.066	0.042	0.016	0.04	0.057
% Predicted Correctly	83.90%	89.70%	55.30%	65.10%	70.90%

Table 4. Results from Logistic Regression of Activity Engagement (n = 622)

Notes: The top line for each variable is the logistic regression coefficient. The middle line in parentheses is the z-test statistic for statistical significance. *** - p < .001 (statistically significant at the 0.1% level of significance, ** - p < .01, * - p < .05. The bottom line in italics is the slope of the logistic function with respect to the independent variable,. The constant does not have a slope interpretation. Control variables for the time lived in Central Illinois and county of residence were included but not reported.

For example, a change from age code 1 to age code 2 would coincide with a decrease in the probability of Canoeing/Kayaking of 2.7%. Income is the variable that affects the most activities, with generally small effects. Age does negatively affect the probability of Swimming activities.

² See Wooldridge (2006, Chapter 17) for a description of logistic regression models.

Gender has a negative effect on the probability of Fishing, while being a Parent has a positive effect on both Fishing and Swimming in an Outdoor Pool. The figures at the end of Table 4 are the "goodness of fit" estimates. Our models have a relatively low "R-squared" values, indicating that the variables predict a small percentage of the variation in responses, but they correctly identify the response of the individual with generally good accuracy (Percent Predicted Correctly is generally over 60%). In academic research, percent predicted correctly with this number of observations is in the 50-80% range, thus we feel that this is sufficient to make predictions about behavior of people within a 50-mile radius of Springfield. Separately, we also asked about attendance at Fishing tournaments. The responses to this question were on a 4-point scale, ranging from Very Likely to Very Unlikely. We found that 14.29% of respondents answered that it was Very or Somewhat Likely that they would attend.

MILES TRAVELED ANALYSIS

We also asked the respondents questions about the number of miles they traveled to engage in each activity or, if they went multiple times, an average of the miles traveled (the first nine rows in Table 5 below). Then, we asked them about the maximum miles that they would travel to engage in an activity for both a day trip and an overnight trip, and the furthest that they have traveled to engage in an activity (the last three rows of the table). The responses indicated that, except for Fishing and Swimming, most people have traveled more than 20 miles to engage in activities (the median indicates the value where half of the sample has traveled or would travel at least that far).

Variable	Mean	Median	Minimum	Maximum	Standard Deviation
Miles Canoeing	83.6100	30.00000	0.000000	1800.000	201.1657
Miles Sailing	86.4545	40.00000	1.000000	430.000	128.5623
Miles Motorboating	81.0781	20.00000	1.000000	1300.000	184.1517
Miles Boarding	70.9667	46.50000	1.000000	700.000	128.5150
Miles Jet Skiing	118.8462	22.50000	1.000000	900.000	233.7790
Miles Fishing	26.5502	15.00000	0.000000	1000.000	77.2802
Miles Swimming Pool	29.3667	5.00000	0.000000	1310.000	122.0918
Miles Swimming Lake River	56.3654	15.00000	0.000000	2000.000	196.6979
Miles Waterfowl Hunting	31.3636	20.00000	5.000000	125.000	36.9710
Miles Day Trip	44.1128	30.00000	0.000000	700.000	50.5815
Miles Overnight Trip	83.1559	50.00000	0.000000	1200.000	106.9485
Furthest Miles	159.1944	58.00000	0.000000	4000.000	334.8314

Table 5. Distribution of Miles Traveled Responses

One of the concerns with the above results is whether the 50-mile radius for the analysis is appropriate. To assess whether we need to "condition" our probabilities for an activity by the distance to the proposed lake, we perform another statistical test to determine whether the miles traveled in the population is equal to, more than, or less than 50 miles. The results of this test indicate that we must adjust the probabilities for Fishing and Swimming in an Outdoor Pool as they are significantly less than 50 miles. Additionally, the average Day Trip is 44.1 miles, a distance that is statistically significantly different from 50 and must be adjusted slightly. Finally, the Miles for an Overnight Trip and the Furthest Miles traveled are 83 and 148 miles, significantly greater than 50.

Miles Traveled Splits and Regression Analysis

We carried out an analysis of the splits for socioeconomic/demographic variables using a different statistical test called an Analysis of Variance test (ANOVA). This test measures differences between multiple groups where the response analyzed is a number like miles versus a Yes/No type of response as with the activity analysis above.³ Similar to our activity analysis, we then assessed the effect of the response in terms of miles traveled as explained by variables like age or income, using a linear regression model.⁴ The results, summarized in Table 6 on the next page, indicate that for most of the activities, there are only one or two variables that significantly affect the willingness to travel.⁵ Being a parent reduces substantially the number of miles willing to travel to Swim in an Outdoor Pool, and older age increases the number of miles. Females are likely to travel more miles to go Motorboating, as are the residents of some counties. The Miles Traveled for Day Trips, for Overnight Trips, and the Furthest Miles Traveled are all affected by Income, with Day Trips showing the least amount of effect per dollar increase in income.

NUMBER OF DAYS ANALYSIS

We further asked respondents how many days in the last 12 months they had engaged in each of the activities that they indicated. The response options were 1 to 3 days, 4 to 6 days, 7 to 9 days, and 10 or more days. Our analysis of this variable, as depicted in Table 7 on page 17, indicates that the modal response is 1 to 3 days for all activities. However, for some activities (i.e, Motorboating, Fishing, Swimming, and Waterfowl Hunting), there is a distinct bimodal distribution, with a significant percentage of respondents answering 10 or more days. To account for this bimodal distribution, we will need to adjust our estimates of expected day trips per person. This will be done in the Visitor and Required Acreage Calculations section below.

³ See Turner and Thayer (2001) for the theory and practice of ANOVA tests.

⁴ See Wooldridge (2006, Chapter 3)

⁵ Full results of regressions shown in Appendix 1.

Activity/Measure	Significant Predictor Variables
Canoeing/Kayaking	None
Motorboating	Gender (+), County (+)
Fishing	None
Swimming in an Outdoor Pool	Age (+), Parent (-)
Swimming in a Lake or River	None
Day Trip	Income (+)
Overnight Trip	Income (+)
Furthest Miles	Income (+)

Table 6. Summary Results of Linear Regression of Miles Traveled, by Activity and Overall

Table 7. Count of Responses, Days Spent in each Activity

Days/Activity	Canoeing or Kayaking	Sailing	Motorboating	Boarding	Jet Skiing
1 to 3	59	8	26	20	15
4 to 6	23	4	16	3	3
7 to 9	8	0	6	4	2
10 or more	11	0	16	3	6
Days/Activity	Fishing	Swimming in an Outdoor Pool	Swimming in a Lake or River	Waterfo	wl Hunting
Days/Activity 1 to 3	Fishing 130	Swimming in an Outdoor Pool 169	Swimming in a Lake or River 72	Waterfo	wl Hunting 6
Days/Activity 1 to 3 4 to 6	Fishing 130 43	Swimming in an Outdoor Pool 169 75	Swimming in a Lake or River 72 52	Waterfo	wl Hunting 6 1
Days/Activity 1 to 3 4 to 6 7 to 9	Fishing 130 43 38	Swimming in an Outdoor Pool 169 75 31	Swimming in a Lake or River 72 52 20	Waterfo	wl Hunting 6 1 1

Number of Days Activity Splits

Next, we examined the relationship between the socioeconomic/demographic variables and the number of days spent doing various activities, using ANOVA and ordered logistic regression as reported in Table 8 on the next page.⁶ As with miles traveled, the days spent engaging in most activities are affected by at most one or two variables (most often parental status, gender, and income). The coefficients are generally small, with at most a 1 category increase in

⁶ Ordered logistic regression is appropriate for variables in ordered categories, which is the way that we asked the number of days question. See Maddala (1986) for a discussion. Full results of the analysis in Appendix 2.

days spent Canoeing/Kayaking for being a parent and nearly a 1 category decrease in the days spent Fishing for females.

NUMBER OF PEOPLE INVOLVED ANALYSIS

Among respondents who indicated they had done an activity, we asked how many people on average participated in the activity. This was asked so we could adjust forecasted visits for the forecasted number of visitors. The results indicate that for most activities, the most common number of participants were 4 or less (Table 9 on the next page). The median number of participants in the activities were 2, 3, or 4, although some respondents reported up to 50 participants, possibly as part of an event or gathering.

Table 8. Summary Results from Ordered Logistic Regression of Number of Days Engaging in an Activity

Activity/Measure	Significant Predictor Variables
Canoeing/Kayaking	Parent (+)
Motorboating	None
Fishing	Income (+), Gender (-)
Swimming in an Outdoor Pool	Income (+), Parent (+)
Swimming in a Lake or River	Gender (+)

Table 9. Analysis of Number of People Involved in Activities

Variable	Mean	Median	Minimum	Maximum	Standard Deviation
People Canoeing	3.970297	3.000000	1.000000	25.00000	3.160555
People Sailing	3.500000	3.000000	2.000000	7.00000	1.623688
People Motorboating	4.828125	4.000000	2.000000	10.00000	2.292532
People Boarding	4.600000	4.000000	1.000000	15.00000	3.389639
People Jet Skiing	3.769231	3.000000	1.000000	10.00000	2.178214
People Fishing	3.006826	2.000000	1.000000	15.00000	1.839433
People Swimming Pool	4.222772	4.000000	1.000000	50.00000	3.800859
People Swimming Lake River	5.157609	4.000000	1.000000	50.00000	4.779527
People Waterfowl Hunting	3.000000	2.000000	1.000000	10.00000	2.486326

Number of People Involved Splits and Regression

As with the miles traveled, we analyzed the data using ANOVA and regression analysis (see Table 10). With this variable, there are several important explanatory variables for Fishing. Increased age reduces the number of people involved in Fishing visits, while Gender and being a Parent increases the number involved. The number of people involved in a Swimming visit at an Outdoor Pool is negatively impacted by age and positively impacted by being a parent. Females take more people on average to Swimming visits at a Lake or River.

Variable/ Activity	Canoeing/ Kayaking	Motorboating	Fishing	Swimming in an Outdoor Pool	Swimming in a Lake or River
Constant	4.010***	4.712***	2.717***	5.540***	4.035***
	(4.9)	(4.23)	(8.66)	(6.39)	(4.92)
Income	-0.203	0.151	0.009	-0.018	-0.064
	(-1.17)	(0.9)	(0.14)	(-0.17)	(-0.31)
Age	0.208	-0.135	-0.202***	-0.368**	-0.334
	(0.64)	(-0.69)	(-2.97)	(-2.16)	(-1.56)
Gender	0.746	0.415	0.635***	-0.557	1.105**
	(1.04)	(0.73)	(3.2)	(-1.12)	(2.26)
Parent	-0.224	0.727	0.927***	0.625*	1.112
	(-0.32)	(1.22)	(4.34)	(1.93)	(1.33)
County	-0.019	-0.038	0.005	-0.006	0.068
	(-0.40)	(-0.93)	(0.32)	(-0.16)	(1.07)
Adjusted R ²	0.032	0.067	0.134	0.029	0.045
F	1.726	1.15	8.815***	4.399***	1.521

Table 10. Results of Linear Regression of Number of People Involved in Activities

SATISFIED WITH AQUATIC RECREATION OPTIONS ANALYSIS

We asked respondents how satisfied they are with the current availability of lake and riverbased recreation options in central Illinois. The results, as reported in Figure 9, indicated that most respondents were satisfied or very satisfied, although about 30% of respondents were unsatisfied at some level with the available options. Our ordered logistic regression analysis of this question showed that only Income had a significant effect on the level of satisfaction (Table 11).

Figure 9. Satisfaction with Available Aquatic Recreation Options

Table 11. Results of Ordered Logistic Regression on Satisfaction with Flatwater Recreation Opportunities

	Satisfied
Income	0.134***
	(2.70)
Age	0.071
	(1.15)
Gender	0.108
	(0.56)
Parent	-0.259
	(-1.49)
County	0.001
	(0.06)
Psuedo R ²	0.011
χ²	12.367**

IMPORTANCE IN QUALITY OF LIFE ANALYSIS

We also asked about how important activities are to the quality of respondents' lives. The results of this analysis, as reported in Table 12, indicate that about 1/3 of respondents who engage in an activity feel that it is important or very important to their quality of life. Higher percentages were noted for Waterfowl Hunting and Swimming in an Outdoor Pool, and lower percentages were seen in the categories of Boarding activities and Jet Skiing.

Importance/ Activity	Canoeing/ Kayaking	Sailing	Motorboating	Boarding	Jet Skiing
Very important	7.22%	27.27%	11.11%	3.45%	3.85%
Important	22.68%	9.09%	23.81%	13.79%	15.38%
Slightly important	48.45%	27.27%	34.92%	48.28%	38.46%
Not at all important	21.65%	36.36%	30.16%	34.48%	42.31%
Importance/ Activity	Fishing	Swimming Pool	Swimming Lake River	Waterfow	l Hunting
Very important	14.79%	11.59%	10.99%	9.0	9%
Important	22.54%	27.96%	23.08%	45.4	5%
Slightly important	37.68%	36.78%	40.66%	18.1	.8%
Not at all important	25.00%	23.68%	25.27%	27.2	27%

Table 12. Analysis of Quality of Life Questions

LATENT DEMAND ANALYSIS

One of the significant issues with demand analysis is what economists call "latent demand." This is the demand that is not being met with current options. As we ask about whether people engage in an activity, how often, etc., we are implicitly assuming that the only group of users for a new aquatic facility will be the existing pool of users behaving as they have in the past. However, those users may use a new facility more than they otherwise would, and new users may be enticed to use a new facility. Potential reasons people use facilities less than they would like or not at all include a perceived lack of ability, lack of proper equipment, a long distance to access facilities, perceived crowding or poor water quality of the facilities, and perceived lack of access to facilities.

Desire to Engage More Often Analysis

To get at the first source of latent demand (i.e., existing users changing behavior to use the new lake), we asked two questions. The first is whether a respondent who currently engages in each activity would like to do so more often. Then we asked about what factors prevented them from engaging in each activity. The results for the first question are shown below in Figure 10. Perhaps not surprisingly, those who engage in all activities seek to do them more often by large majorities.

Figure 10. Desire to Engage More Often by Activity.

Factors Preventing Greater Usage

In terms of barriers that prevent respondents from engaging in the activities more often, we asked them to make choices from a battery of options, then to add other explanations if necessary. The result of the analysis, as reported in Table 13, indicates that factors related to the availability of options in the area have relatively little to do with the reasons that respondents would like to engage in activities more often. Only Sailing had responses of "no place to go" or "too far away" constituting 1/3 of the overall responses. The modal response for all activities but Swimming in an outdoor pool and Motorboating was that the respondent did not have the time to engage in the activity. For Swimming, the modal response was overcrowding, which may be related to availability. For Motorboating, not having the necessary equipment was the main reason to not engage. Another response that had typically much larger responses than the "lack of access" response was the "too expensive" response. The "other barriers" responses, as provided in the open-ended response block, varied, but very few indicated a lack of an availability to access aquatic facilities. Weather-related responses were the most frequently cited. The coronavirus and COVID-19 disease were the second most often cited reason in the other responses, surely a sign of the times.

Table 13. Analysis of Factors Preventing Greater Usage of Activities

Factor Preventing/Activity	Canoeing/Kayaking	Sailing	Motorboating	Boarding	Jet Skiing
There are no places to go XXXX in central Illinois	11.96%	13.33%	5.88%	11.43%	8.00%
The places to go XXXX in central Illinois are too far away	11.96%	20.00%	5.88%	11.43%	12.00%
The places to go XXXX in central Illinois have poor water quality	6.52%	0.00%	2.94%	2.86%	8.00%
The places to go XXXX in central Illinois are poorly maintained	6.52%	0.00%	8.82%	11.43%	4.00%
The fees at places to go XXXX in central Illinois are too expensive	8.70%	13.33%	11.76%	11.43%	4.00%
The places to go XXXX in central Illinois are too crowded	5.43%	0.00%	2.94%	5.71%	4.00%
Personal health doesn't allow it	4.35%	6.67%	2.94%	5.71%	0.00%
Do not have the time	22.83%	26.67%	23.53%	20.00%	24.00%
Do not have access to the necessary equipment	17.39%	13.33%	26.47%	17.14%	32.00%
Other	4.35%	6.67%	8.82%	2.86%	4.00%
Factor Proventing (Activity	Fiching	Swimming	Swimming	Waterfowl	Hunting
Factor Preventing/Activity	ristiling	Pool	Lake River	wateriowi	
There are no places to go XXXX in central Illinois	6.90%	Pool 7.46%	Lake River 8.59%	0.00	%
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away	6.90% 8.97%	Pool 7.46% 8.96%	Lake River 8.59% 13.28%	0.00	%
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality	6.90% 8.97% 12.41%	Pool 7.46% 8.96% 4.98%	Lake River 8.59% 13.28% 14.06%	0.00 0.00 0.00	%
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained	6.90% 8.97% 12.41% 13.79%	Pool 7.46% 8.96% 4.98% 7.96%	Lake River 8.59% 13.28% 14.06% 13.28%	0.009 0.009 0.009	% % %
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained The fees at places to go XXXX in central Illinois are too expensive	6.90% 8.97% 12.41% 13.79% 11.72%	Pool 7.46% 8.96% 4.98% 7.96% 14.43% 14.43%	Lake River 8.59% 13.28% 14.06% 13.28% 4.69%	0.00 0.00 0.00 0.00 20.00	% % % %
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained The fees at places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too	6.90% 8.97% 12.41% 13.79% 11.72% 9.66%	Pool 7.46% 8.96% 4.98% 7.96% 14.43% 18.41%	Lake River 8.59% 13.28% 14.06% 13.28% 4.69% 10.94%	0.00 0.00 0.00 0.00 20.00	% % % %
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained The fees at places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too crowded Personal health doesn't allow it	6.90% 8.97% 12.41% 13.79% 11.72% 9.66% 6.21%	Pool 7.46% 8.96% 4.98% 7.96% 14.43% 18.41% 5.47% 14.7%	Lake River 8.59% 13.28% 14.06% 13.28% 4.69% 10.94% 6.25%		% % % % % %
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained The fees at places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too crowded Personal health doesn't allow it Do not have the time	6.90% 8.97% 12.41% 13.79% 11.72% 9.66% 6.21% 17.24%	Pool 7.46% 8.96% 4.98% 7.96% 14.43% 18.41% 5.47% 15.42%	Lake River 8.59% 13.28% 14.06% 13.28% 4.69% 10.94% 6.25% 18.75%		% % % % % % %
There are no places to go XXXX in central Illinois The places to go XXXX in central Illinois are too far away The places to go XXXX in central Illinois have poor water quality The places to go XXXX in central Illinois are poorly maintained The fees at places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too expensive The places to go XXXX in central Illinois are too expensive Do not have the time Do not have access to the necessary equipment	6.90% 8.97% 12.41% 13.79% 11.72% 9.66% 6.21% 17.24% 8.97%	Pool 7.46% 8.96% 4.98% 7.96% 14.43% 18.41% 5.47% 15.42% 12.44% 12.44%	Lake River 8.59% 13.28% 14.06% 13.28% 4.69% 10.94% 6.25% 18.75% 7.03%		% % % % % % % % % % %

Reasons for Not Engaging in each activity Analysis

To assess the second source of latent demand, we asked those who did not answer that they had engaged in each activity, why they had not. The responses to this question indicate some latent demand due to inaccessibility for non-users, but there is less latent demand in this group (Table 14). The responses of "no place to go" or "too far away" constitute less than 20% of the responses for all but Sailing and the two Swimming categories. A lack of access to necessary equipment was the modal response for all activities except for Swimming activities and Waterfowl Hunting. Crowding was mentioned most often for Swimming in an outdoor pool, poor maintenance was the modal response for Swimming in a lake or river, and a lack of interest was most often cited by those not going Hunting. Once again, the expense of each activity was also frequently cited. Taken together, the analysis reveals a small, but not overwhelming, amount of latent demand. Minor adjustments to the numbers of projected visitors will have to be made, as discussed in the next section.

Reason for Not	Canoeing/ Kayaking	Sailing	Motorboating	Boarding	Jet Skiing
There are no places to go XXXX in central Illinois	9.14%	12.43%	8.24%	8.11%	8.33%
The places to go XXXX in central Illinois are too far away	8.57%	8.47%	7.06%	5.41%	6.41%
The places to go XXXX in central Illinois have poor water quality	0.00%	0.00%	0.00%	0.00%	0.00%
The places to go XXXX in central Illinois are poorly maintained	5.14%	3.39%	7.65%	7.43%	6.41%
The fees at places to go XXXX in central Illinois are too expensive	12.57%	13.56%	12.94%	10.81%	10.90%
The places to go XXXX in central Illinois are too crowded	5.71%	5.08%	10.00%	5.41%	5.77%
Personal health doesn't allow it	9.71%	8.47%	7.65%	10.81%	10.26%
Do not have the time	0.00%	0.00%	0.00%	0.00%	0.00%
Do not have access to the necessary equipment	23.43%	23.16%	23.53%	25.00%	26.92%
Want to	8.57%	9.60%	10.59%	8.11%	9.62%
No interest	13.71%	12.43%	10.00%	15.54%	12.18%
Other	3.43%	3.39%	2.35%	3.38%	3.21%

Table 14. Analysis of Reasons for Not Engaging in an Activity

Reason for Not Engaging/Activity	Fishing	Swimming Pool	Swimming Lake River	Waterfowl Hunting
There are no places to go XXXX in central Illinois	5.41%	6.59%	9.91%	8.70%
The places to go XXXX in central Illinois are too far away	8.11%	6.59%	10.81%	11.59%
The places to go XXXX in central Illinois have poor water quality	0.00%	0.00%	0.00%	0.00%
The places to go XXXX in central Illinois are poorly maintained	8.11%	9.89%	18.92%	4.35%
The fees at places to go XXXX in central Illinois are too expensive	16.22%	12.09%	5.41%	11.59%
The places to go XXXX in central Illinois are too crowded	5.41%	23.08%	10.81%	5.80%
Personal health doesn't allow it	6.76%	5.49%	9.91%	15.94%
Do not have the time	0.00%	0.00%	0.00%	0.00%
Do not have access to the necessary equipment	18.92%	13.19%	7.21%	0.00%
Want to	13.51%	8.79%	6.31%	11.59%
No interest	10.81%	10.99%	13.51%	23.19%
Other	6.76%	3.30%	7.21%	7.25%

Table 15. Analysis of Reasons for Not Engaging in an Activity (Cont.)

VISITOR AND REQUIRED ACREAGE CALCULATIONS

Using the survey results, we developed estimates of the number of visitors to flatwater aquatic recreation facilities and the required number of acres of flatwater recreation capacity. We illustrate the calculations using the example of the Canoeing or Kayaking activity. We used similar calculations for each activity in the survey. Table 15 shows the calculations. Full results for each activity are included in Appendix 2.

Step in Calculation		Calculation	
Base Probability		0.1616	
Adjust for Significant Variables			
Age		0	
Income		0.028	
Not Go Adjustment			
Doesn't Go	0.8384		
Thinks Unavailable	0.1771		
Probability of Going	0.1616	0.0240	
Analysis of 30 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of Column C above)	0.2136	278,151	59,412
Probability to 50 miles	0.0210	271,744	5,709
Total Expected Annual Trips			65,121
Adjust for # People			
Median - 2 - 1.5 additional boats			97,681
Total Expected Number of Boats			162,802
Adjust for Wanting to Go More Often			
Wants to go more often	0.901		
Thinks Unavailable	0.2391		
Probability of Going	0.1616		
Number of Extra Trips	2		11,335
Total Adjusted Number of Boats			174,137
Calculate Peak Required Acreage			
Summer Peak	0.6439		112,127
Number of Days			92
Peak Average Boats per Day			1,219
Poisson Distribution 99th Percentile			1,301
Acreage Required	10	acres/boat	13,015

Table 16. Canoeing/Kayaking Visitor and Acreage Calculations

The base probability of an individual engaging in Canoeing or Kayaking over a year is 16.16% (see Figure 6). We adjusted that base probability both for the socioeconomic and demographics variables that affected that probability as determined by the logistic regressions referenced earlier and for the differences in our survey sample and the population within the 50-mile radius of Springfield. We gathered data on the population using the ESRI ArcGIS Community Analyst tool. The original data comes from the 2010 US Census and from ESRI forecasts.

The variables that affected the probability of Canoeing/Kayaking in the survey were the Age of the respondent and their Household Income. Regarding age, the median age of the population is 41.9 years. The median response on the survey was 35 to 44 years, so no adjustment to the probability is necessary for age. For income, the median household income of the population in the 50-mile radius is \$55,579, the median survey response was \$30,001 – 45,000, indicating that most survey respondents had lower household income than the population. Therefore, we adjusted the probability upward by 2.8%, as indicated by the logistic regression results. This produces an estimated probability of 18.96% for an individual engaging in Canoeing or Kayaking over a year.

The next adjustment is for one element of latent demand, as explained in the survey analysis. For those individuals who did not go Canoeing or Kayaking, 17.71% indicated that it was for a reason of perceived lack of availability. Multiplying this by the percentage of respondents that did not Canoe or Kayak, we estimate that 14.85% of the sample did not go because they thought there was insufficient availability. We then multiply that by the base probability, assuming implicitly that only that percentage of respondents would engage in the activity. The net adjustment due to the first element of latent demand is 2.4%, bringing the total estimated probability of Canoeing/Kayaking to 21.36%.

Next, we adjust for the stated willingness to travel a certain distance to Canoe/Kayak. The median of survey responses for this activity is 30 miles. We assume that the entire population in that 30-mile radius would have the probability of Canoeing/Kayaking we calculated above. That population is 278,151, according to ArcGIS Community Analyst. Multiplying that by the estimated probability of 21.36% yields an estimated 59,412 trips (annually) from the population within 30 miles of Springfield. We then adjust the probability for the remaining 20 miles to the edge of the 50-mile radius by examining the probability distribution of responses to the miles traveled calculation. We combine the probability of traveling up to 50 miles with the probability of traveling 30-50 miles and estimate that 2.1% of the population in the 30-50 mile "ring" would engage in Canoeing/Kayaking. That population is 271,744, so our estimate is that an additional 5,709 individuals from that area would potentially engage in Canoeing or Kayaking. Adding the two estimates together, we estimate 65,121 Canoe/Kayak trips a year from residents in the 50-mile radius.

The next step of the analysis is to adjust for the number of people that engage in each trip. We asked respondents how many people, including themselves, went on their trip. The median response to this question was 3, indicating that the trip included 2 additional participants. One difficulty in interpreting this data is to convert this to the required number of boats. Acreage estimates from the Water and Land Recreation Opportunity Spectrum (WALROS) for boating activities are based on the number of boats. The occupancy of a typical Canoe is 2 people, and a Kayak is 1, although variants exist. Taking a conservative approach, from this response, we add 1.5 extra boats per trip to the total, indicating a total of 162,802 boats will be utilized over a year.

Next, we adjust for the second source of latent demand, those who wish to engage more often in the activity but feel that the water needed is inaccessible. Using the same logic as with those who do not go, we multiply the percentage of those who want to go more often (90.1%) by the number of those who want to go more often but thought the facilities were unavailable (23.91%) and the base probability of going (16.16%). We then assume that wanting to go more indicates a one-category increase in the number of trips, which is 2 trips per year. Then we apply the result to the estimated total number of boats from the last step (162,802) to add 11,335 boat-trips per year to the estimate. Our final estimate of the number of boat-trips per year for Canoeing and Kayaking is 174,137.

The final adjustment is for seasonality and peaks. The region does not need water capacity for 174,137 trips. Trips take place in different seasons and on different days. To reflect this, we asked survey respondents what seasons they engaged in Canoeing/Kayaking. The modal response was Summer (June, July, August), with 64.39% of respondents. Therefore, we apply this percentage to the estimated number of boat-trips, producing an estimate of 112,127 boat-trips over the 92-day summer period, an average of 1,219 boat-trips per day. We note that this is an average and not an estimate of the peak capacity that must be planned for. There are a few ways that we can use this average to estimate peak usage. The method that is most appropriate for this data is to simulate the usage with a Poisson distribution. It uses a known distribution of data that consists of counts of activities or outcomes.⁷ It is an appropriate distribution to use because it requires only one parameter estimate, the average number of activities, which we have calculated as 1.219. We define the maximum peak as being the 99th percentile of the Poisson distribution with this mean. The resulting peak estimated by simulation is **1,301 visitor-boat trips**. This is the number of Canoes/Kayaks that must be accommodated in the 50-mile radius on a given summer day.

We translate this number of boat-trips to required capacity using capacity guidelines issued by the US Bureau of Reclamation in their *Water and Land Recreation Opportunity Spectrum Users' Handbook*, 2nd edition (WALROS). Using Tables 2.5 and 2.6 from that publication, we estimate required acreage using estimated suburban/rural developed guidelines. For Canoeing or Kayaking, the guidelines in Table 2.6 suggest using the higher capacity guidelines (i.e., smaller boats, less speed, no need to worry about shallows, less use of sensitive resources/impact). This would be 10 acres/boat, according to Table 2.5 in that publication. Applying this to the estimated number of boat-trips at the peak, the required capacity would be **13,015 acres** for Canoeing/Kayaking.

⁷ The Poisson probability distribution function is $p(x; \lambda) = \frac{\lambda^x}{x!}e^{-\lambda} \forall \lambda > 0, x = 0, 1, 2, \cdots$. For a description, see Borovkov, A. A. (2013). *Probability Theory* (1st ed. 2013. ed.). London: Springer London, p. 39.

TOTAL ESTIMATED REQUIRED ACREAGE

We applied the same model to estimate the required acreage for all 9 activities. We followed the survey results and made assumptions only for the adjustment for the number of people and the acreage per boat or user (swimmer, hunter). Table 16 below shows our assumptions for all activities.

Activity	Survey Answer for # of Additional People – Assumption	Required Acreage per Boat or User
Canoeing/Kayaking	2 – 1.5 additional boats	10
Sailing	2 – 0 additional boats	40
Motorboating	3 – 0 additional boats	50
Boarding	3 – 1.5 additional boats	20
Jet Skiing	2 – 2 additional boats	20
Fishing	1 – 0 additional boats	20
Swimming Outdoor Pool	3 – 3 additional swimmers	0.18
Swimming Lake or River	3 – 3 additional swimmers	0.18
Waterfowl Hunting	1 – 1 additional hunters	18

Table 17. Assumptions Used in Required Acreage Calculations

Most of the additional boat assumptions come from estimates of boat capacity. As explained above, with Canoeing/Kayaking, there is a mix of boat types. This also impacts Boarding activities. Without detail as to the kind of board, we cannot tell whether the activity was Wake Boarding (requiring 0 additional boats for 3 additional people) or Paddle Boarding (requiring 3 additional boats for 3 additional people). We again average this and assume that there will be 1.5 additional boat-trips per year.

Acreage assumptions come from the WALROS, again using the suburban/rural developed guidelines. For Boarding activities, we assume that the slower types of activities like Paddle Boarding would require a similar acreage as Canoeing/Kayaking (10 acres/boat). In comparison, Wake Boarding or Water Skiing would require 30 acres (boats must be slower than other motorboats to allow for skiers/boarders to start/end). Again we take the average and assume 20 acres/boat for Boarding activities.

Table 17 shows the final results of our analysis. Our base case estimate is that just under 70,000 acres of flatwater recreation supply would be needed to meet peak demands. Additionally, we performed many sensitivity analyses on the assumptions. The variable that has the most effect on the results is the required acres variable. Therefore, we created two scenarios, with low acreage use per boat for the larger boat types (i.e., activities Sailing, Motorboating, Boarding – accounting for water skiing, Jet Skiing, and Fishing). For the low acreage scenario, we reduced

the required acreage by 10 acres/boat, and for the High Acreage scenario, we increased it by 10 acres/boat. This produces a Low Acreage estimate of 59,000 acres and a high acreage estimate of 81,000 acres.

Activity	Required Acres - Base Estimate	Low Acreage	High Acreage	
Canoeing	13,015	13,015	13,015	
Sailing	3,040	2,660	3,420	
Motorboating	14,900	13,410	16,390	
Boarding	11,940	8,955	14,925	
Jet Skiing	6,380	4,785	7,975	
Fishing	17,960	13,470	22,450	
Swimming Outdoor Pool	428	428	428	
Swimming Lake or River	721	721	721	
Waterfowl Hunting	1,566	1,566	1,566	
Total Required Acreage	69,950	59,010	80,890	

Table 18. Results of the Survey Analysis Required Acres

RECREATION DEMAND STATISTICAL MODEL

To assess the demand for flatwater recreation amenities in Central Illinois, independent of the survey results, we built a statistical model using data from USACE lakes throughout the United States. This methodology is consistent with other studies of flatwater recreational demand (U.S. Army Corps of Engineers, Tulsa District, 2013), and a rich stream of research on recreational demand modeling (e.g., Ward and Martin, 1995). First, we gathered data on visitors to USACE lakes from the VERS system at the Corps. This data includes visitor counts by length of stay (i.e., day trip versus overnight) as well as by use. We downloaded data on lakes in the Great Lakes and Ohio River, Northwestern, Southwestern, and Mississippi Corps Divisions. We then mapped the data using the ArcGIS system and created 50-mile rings around the lakes. These 50-mile rings, as depicted in Figure 11, become the population of potential visitors to each lake. We matched this data with data on Corps projects from a database maintained by Duke University's Nicholas Institute to calculate surface acreage for each lake (Patterson, Doyle, and Kuzma, 2018), a key variable in predicting visitation.⁸ We then used the ESRI Community Analyst program to download the socio-economic and demographic variables of interest that should affect visitation at the Corps lakes, for the lakes in the VERS database, and a 50-mile radius around Springfield.

Figure 11. Location of Corps Projects in the Dataset (n= 194)

⁸ The Duke University dataset contains data for acre-feet of water storage at Corps projects. We obtained data on surface acreage on a smaller sample of lakes from various sources, including Corps websites and Wikipedia. We found a strong correlation between the acre-feet and surface acreage and used the acre-feet data to impute the surface acreage for the larger sample.

Table 18 and Figures 12 and 13 show summary statistics for the data. There are 194 lakes in the database, although not all have full data available. Figure 13 shows the distribution of lakes by Corps Division. Aside from the socio-economic and demographic variables, we calculated the number of "substitute acres" in the 50-mile radius from each lake, using data in ESRI's system imported from the U.S. Geological Survey on acres of surface water in an area.

Variable/Statistic	Source	Mean	Median	S.D.	Min	Max
Surface Area	Duke U.	21,821	5,606	68,694	36	580,700
Substitute Acreage	ESRI	92,224	48,880	179,500	0	1,472,000
Population	ESRI	943,300	626,700	892,900	9,749	3,852,000
Median Household Income	ESRI	50,155	51,420	8,986	31,669	80,138
Median Age	ESRI	40.71	40.50	2.89	32.40	49.10
Total Day Use	VERS	546,700	255,500	839,100	7,313	5,613,000

Table 19. Summary Statistics for the Lakes (n= 194)

Figure 12. Number of Reservoirs by Total Day Use (n= 194)

Figure 13. Number of Reservoirs by Division (n= 194)

The data have a high level of positive skewness and variation, especially in the surface area, substitute acreage, and day-use variables. The mean is much higher than the median for each of these variables. And the graph of day use, as depicted in Figure 12, shows a definite skew. Given these tendencies, we will employ a natural logarithm transformation to the dependent variable and independent variables of interest.⁹

Table 19 shows the results of the regression of total day use counts on the variables of interest. We also include a control variable for Division, which will capture "fixed effects" of each lake's region, such as climate and its effect on seasonal access. All variables except the Division indicator variable were entered into the models as natural logarithms. The coefficients for these variables signify an increase in the percentage of day-use visitors created by a 1% increase in the modeled variable. For example, a 1% increase in the surface area of a project coincides with an increase in day-use visitors by 0.6%.

⁹ A regression model is a standard predictive model for assessing a variable that is continuous in nature (see, e.g., Wooldridge, 2006). Although the data here is in counts and therefore technically discrete, discrete variable models such as Poisson or negative binomial regressions collapse toward continuous variable models as the number of counts becomes large. There are still typically issues with skewedness in the data, but those are controlled for through using transformations of variables such as the natural logarithm.

Variable	Coefficient	Standard Error	t-ratio	
Constant	26.69	7.78	3.43	***
Division	0.30	0.11	2.78	***
Log (Surface Area)	0.60	0.05	10.97	***
Log (Substitute Acreage)	-0.15	0.07	-2.00	**
Log (Population)	0.48	0.10	4.59	* * *
Log (Median Household Income)	-1.33	0.56	-2.38	**
Log (Median Age)	-2.81	1.07	-2.63	* * *
Model R ²	0.44			
F(6, 176)	26.95	***		

Table 20. Results from Regression Analysis of Log (Day Use Total Visits) (n= 183)

Note: *** - *p* < .01, ** - *p* < .05. *Heteroscedastic-consistent standard errors used in the analysis.*

We then used the results in Table 19 to calculate the expected visitors to a lake in Central Illinois, using data from the 50-mile radius from our survey analysis. We performed a Monte Carlo simulation of the results and evaluated 100,000 possible outcomes using the distribution of the variable coefficients and standard errors from the regression.¹⁰ Median estimates, as reported in Table 20, of the number of annual day-use visitors varies by the size of the lake to be built, from just under 120,000 for a 1,000-acre lake to 230,000 for a 3,000-acre lake. These numbers are comparable to the lakes in the Corps dataset. For each lake in the dataset with surface areas from 1,000 to 3,000 acres, the mean annual day visits are 212,000, with a median of 160,000. This analysis indicates that there will be a reasonable amount of demand for flatwater recreation opportunities served by a lake in Central Illinois, confirming the results of the survey analysis.

Measure/Acreage	1,000	1,500	2,000	2,500	3,000
Median Visits	119,683.55	152,760.19	180,442.77	206,362.40	229,742.24
Prob. > 100,000	50.67%	51.54%	52.21%	52.68%	53.08%
Prob. > 50,000	53.23%	54.07%	54.70%	55.18%	55.59%

Table 21. Results from Monte Carlo Estimation of the Annual Number of Day Use Visits,100,000 iterations

¹⁰ Monte Carlo simulation is a methodology for estimating the value of variables given uncertainty in the distribution of possible values. In this methodology, random values of variables are generated from a known mean and standard deviation using known distributions of the variable (in this case, the coefficients of the variables in Table 2 are assumed to be normally distributed with a mean equal to the coefficient and a standard deviation equal to the standard error of the estimated coefficient). Then the randomly generated values of the coefficients, representing 100,000 possible future outcomes, are applied to the data for the 50-mile radius from Springfield, generating estimates of visitors. For more on this technique see Mooney (1997) and Kriz (2001).

FORECAST OF FUTURE DEMAND

We develop forecasts of future needs through forecasting the important variables used in our models. The important predictor variables in the survey and statistical models are age, income, gender, and parental status, as well as total population in the area.

We gathered estimates of county population forecasts from Hauer (2019). The forecasts were generated using a variant of the cohort-comparison method (CCM), which is also used by the US Census Bureau in developing their official population forecasts at the national and state levels. This Hauer data is more disaggregated (to the county level) and is much more detailed, including forecasts by 5-year age group (0-4 years, 5-9, etc.) and gender. This gives us forecasts of three important variables. We use data from the counties in the 50-mile radius used in the survey and statistical models. We also compare this data to projections provided by ESRI, whose data we used in the survey analysis (Table 21). ESRI data is only available to 2025. Neither the Hauer data nor the ESRI database contains projections of the number of families – which implies parental status.

	Population Growth Rate (Annual)		Median Current Va	Median Age: Current Value 41.7		Gender (% Female) Current Value 50.80%	
Period	Hauer	ESRI	Hauer	ESRI	Hauer	ESRI	
2020-2025	-0.34%	-0.49%	40-44	42.8	50.50%	50.70%	
2025-2030	-0.45%		40-44		50.45%		
2030-2035	-0.55%		40-44		50.39%		

Table 22. Projected Values of Variables Impacting Aquatic Recreation Demand, 2020-2035

The data in Table 21 suggest that only total population will change much over the next ten years. Therefore, we build a time series forecast model of personal income using population as a predictor variable. We gathered data from the U.S. Bureau of Economic Analysis on personal income and population by county (2020). We then analyzed the historical patterns of the relationship between the two variables using an autoregressive-distributed lag model (ARDL – see Wooldridge, 2006). The ARDL model simultaneously considers how median income has evolved over time and how it has been affected over time by population. We did not enter values for the median age or gender into the model as they will not change much over time.¹¹

¹¹ Formally, the ARDL model can be expressed as $Income_t = \alpha_0 + \lambda_0 Population_t + \rho_1 Income_{t-1} + \rho_2 Population_t + \rho$

 $[\]lambda_1 Population_{t-1} + \dots + \lambda_n Population_{t-n} + \rho_n Income_{t-n} + \nu_t$, where $\nu_t = u_t - \rho u_{t-1}$. The λ 's are coefficients on the current (time t) and lagged (t-1, t-2, and so on up to t-n) values of Population and the ρ 's are coefficients on the lagged values of Income.

The results of the analysis are shown in Table 22 and Figure 14. The regression results in Table 19 can be difficult to understand, but the basic logic can be shown in the first row of the main body of the table. The coefficient on the first lag of income has a positive and "statistically significant" effect on the current value of income. Statistical significance simply means that it is not likely that the observed relationship is due to chance. We see this because the probability in the last column (Prob.) is very small (while it seems to be 0 it really is just incredibly small). This is the probability that we got the results due to a sample that would not be expected (what we call a "strange" sample). The coefficient of 0.68 means that each 1% increase in personal income in the past year (for example, 2019) increases the predicted value of personal income by 0.68% this year. This is an example of what one might call persistence (the technical term is serial correlation). There is a positive effect from year to year. This is amplified by the second term, which is the second lag (so 2018 in our example). Population has a strange pattern, bouncing back and forth between positive and negative values over time, but there is an overall positive effect of population on income.¹² Arguably, for our purpose, the most important metric is the "Adjusted R²" measure reported in the summary statistics at the bottom of the table. This metric ranges from 0, indicating a poorly fit model, to 1, indicating a perfect fit. The fit of the model to the actual data is extremely good.¹³

Variable	Coefficient	Std. Error	t-Statistic	
Constant (α)	-0.128	3.728	-0.034	
Personal Income (t-1)	0.574	0.144	3.972	***
Personal Income (t-2)	0.228	0.166	1.370	
Personal Income (t-3)	0.148	0.140	1.059	
Population (t)	-1.225	1.172	-1.045	
Population (t-1)	4.427	2.046	2.163	**
Population (t-2)	-3.126	1.103	-2.834	***
Adjusted R ²	0.998761			
F(6, 40)	6180.223	***		

Table 23. Results from ARDL Regression of Personal Income on Population, 1972-2018.

Note: All Variables in Natural Logarithms. *** - p < .01, ** - p < .05, * - p <0.1.

The strong fit of the model is shown on the left side of Figure 14. The divergence between the actual data (the orange line) and the forecast data (blue) is difficult to see because of the

¹² This is easier to see if one is interested in what is called the Error Correction formulation of the model, which factors out the longer run terms of the model and focuses on how the two variables relate over time. Full results are available from the authors.

¹³ With results this strong, researchers often suspect model "overfitting". To test this, we estimated the model over various timeframes (this process is called cross-validation). Model fit was very similar over all timeframes, indicating no overfitting.

overlap between them. This is further reflected in the forecast evaluation statistics in the box at the right of the figure. The Root Mean Squared Error is a measure in the units of the dependent variable (so natural log of Personal Income) of how large on average a forecast error is likely to be. Therefore, on average we would expect an error of 0.0205% each year. This is obviously a very small error. The results of the forecast model suggest that personal income in the 50-mile radius from Springfield can be expected to grow at an average annual rate of 1.3% for 2020-2025, at a slightly slower rate of 0.91% in 2025-2030, and at an even slower 0.54%. The 2020-2025 rate is slightly higher than the ESRI forecast of 1.06% growth in income but is of a similar magnitude.¹⁴

Figure 14. Results of ARDL Regression and Forecast through 2030

FORECASTS OF REQUIRED ACREAGE

We used the forecasted changes in the key variables in the calculations for required acreage established in the survey analysis portion of the report. We substituted the forecast income and population numbers into our calculations and obtained results for required acreage (Table 23). We converted the estimates from the income regression forecast into categories to match the way that was measured in the survey analysis. For the 2025 forecasts we increased the income category by one, as the median income is forecast to move one category higher. As age and gender did not change markedly over the forecast period, we did not analyze impacts of those forecast values. The results suggest that required acreage will rise in 2025 as median household

¹⁴ The results of this forecast may be affected by the SARS-CoV2/COVID-19 pandemic and associated economic contraction. However, at the time of this report, the ultimate path of the recovery from the pandemic, and the pandemic itself, are unknown and have a high degree of uncertainty. While we acknowledge the potential effects of this event for our forecasts, there is little way of knowing how much the forecasts will have to be adjusted.

income rises, but then fall through 2035 as the population decline begins to outweigh the income increase.¹⁵

Activity	Required Acres - 2020	Required Acres - 2025	Required Acres - 2030	Required Acres - 2035
Canoeing	13,015	14,423	14,100	13,740
Sailing	3,040	3,000	2,920	2,880
Motorboating	14,900	16,900	16,550	16,100
Boarding	11,940	11,740	11,500	11,200
Jet Skiing	6,380	7,080	6,940	6,760
Fishing	17,960	17,660	17,280	16,840
Swimming Outdoor Pool	428	446	437	425
Swimming Lake or River	721	709	694	675
Waterfowl Hunting	1,566	1,728	1,692	1,656
Total Required Acreage	69,950	73,686	72,113	70,276

Table 24. Forecasts of Required Acreage, 2020-2035

¹⁵ Due to the level of uncertainty in the time path of the economy, amplified by the SARS-CoV2/COVID-19 pandemic, we are not comfortable with forecasting past 2035.

CALCULATION OF UNMET DEMAND

In the first section of this report, we estimated the supply of water appropriate for flatwater recreation at 57,503 acres. In the second section, demand for flatwater recreation was estimated at between 59,010 and 80,890 acres in 2020, with a base estimate of 69,950 acres. Demand is expected to grow to 73,686 acres in 2025, 72,113 acres in 2030, and 70,276 in 2035.

Given these figures, Table 1 shows the calculation of unmet demand, assuming that there are no other projects undertaken during the next 10 years. The lowest of the range of unmet demand estimates is 1,507 acres currently, which is expected to grow in the future as indicated in the table.

Year	Unmet Demand – Point Estimate	Unmet Demand – Range
2020	12,447	1,507 – 23,387
2025	16,183	5,191 – 27,394
2030	14,610	3,597 – 26,010
2035	12,773	1,778-24,424

Table 25. Estimates of Unmet Demand, 2020-2030

References

Borovkov, A. A. (2013). Probability Theory (1st ed. 2013.). Springer London.

Dolesch, R. J. & Colman, A. (2020, March 16). Keeping a safe physical distance in parks and on trails during the COVID-19 pandemic. *National Recreation and Park Association*. <u>https://www.nrpa.org/blog/keeping-a-safe-social-distance-in-parks-and-on-trails-during-the-covid-19-pandemic/</u>

Hauer, M. E. (2019). Population projections for U.S. counties by age, sex, and race controlled to shared socioeconomic pathway. *Scientific Data*, 6(1), 190005.

Kriz, K. A. (2001). The Effect of Tax Increment Finance on Local Government Financial Condition. *Municipal Finance Journal*, 22(1), 41.

Maddala, G. S. (1986). *Limited-Dependent and Qualitative Variables in Econometrics* (First Paperback Edition). Cambridge University Press.

Mooney, C.Z. (1997). *Monte Carlo Simulation*. Thousand Oaks, CA: Sage Publications.

Patterson, L., Doyle, M., & Kuzma, S. (2018). *Creating Data as a Service for U.S. Army Corps of Engineers Reservoirs*. Durham, NC: Duke University. <u>http://nicholasinstitute.duke.edu/publications</u>

Roth, K. (2020, May). How COVID-19 impacts park and recreation funding. *Parks and Recreation*, *55*(5), 18-19.

Turner, J. Rick. (2001). *Introduction to Analysis of Variance: Design, Analysis, & Interpretation*. Sage Publications.

U.S. Army Corps of Engineers Tulsa District. (2013). *Sunflower H20 Report*. Tulsa, OK: U.S. Army Corps of Engineers, Tulsa District.

U.S. Bureau of Economic Analysis. (2020, August 8). *GDP & Personal Income, Regional*. Interactive Data. <u>https://apps.bea.gov/iTable/index_regional.cfm</u>

Venton, Z. S., Barton, D. N., Gunderson, V., Figari, H., & Nowell, M. (in press). Urban nature in the time of crisis: Recreational use of green space increases during the Covid-19 outbreak in Oslo, Norway. *Environmental Research Letters*. <u>https://doi.org/10.1088/1748-9326/abb396</u>

Ward, F. & Martin, K. (1995). *Regional Recreation Demand Model for Large Reservoirs: User's Guide and Model for Documentation, Version 1.0*. Washington, DC: U.S. Army Corps of Engineers.

Wooldridge, J. M. (2006). *Introductory Econometrics: A Modern Approach* (3rd edition). Mason, OH: Thomson Higher Education.

ACTIVITY COUNTS

Activity Canoeing						
Activity_Canoeing	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	524	83.84	524	83.84		
1	101	16.16	625	100.00		

Activity Sailing						
Activity_Sailing	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	613	98.08	613	98.08		
1	12	1.92	625	100.00		

Activity Motorboating					
Activity_ Motorboating	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
0	561	89.76	561	89.76	
1	64	10.24	625	100.00	

Activity Boarding						
Activity_Boarding	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	595	95.20	595	95.20		
1	30	4.80	625	100.00		

Activity Jet Skiing						
Activity_Jet Skiing	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	599	95.84	599	95.84		
1	26	4.16	625	100.00		

Activity Fishing						
Activity_ Fishing	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	332	53.12	332	53.12		
1	293	46.88	625	100.00		

Activity Swimming Pool						
Activity_ Swimming Pool	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	219	35.04	219	35.04		
1	406	64.96	625	100.00		

Activity Swimming Lake River					
Activity_Swimming Lake River	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
0	441	70.56	441	70.56	
1	184	29.44	625	100.00	

Activity Waterfowl Hunting						
Activity_ Waterfowl Hunting	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	613	98.08	613	98.08		
1	12	1.92	625	100.00		

ACTIVITY ANALYSIS BY AGE GROUP

Table of Age_Code by Activity_Canoeing

Age_Code	Activity_Canoeing		
Frequency	0	1	Total
1	84	25	109
2	121	28	149
3	92	20	112
4	126	22	148
5	85	6	91
6	16	0	16
Total	524	101	625

Statistics for Table of Age_Code by Activity_Canoeing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	14.1077	0.0149
Likelihood Ratio Chi-Square	5	17.7520	0.0033
Mantel-Haenszel Chi-Square	1	12.4455	0.0004
Phi Coefficient		0.1502	
Contingency Coefficient		0.1486	
Cramer's V		0.1502	

Table of Age_Code by Activity_Motorboating

Age_Code	Activity_ Motorboating		
Frequency	0	1	Total
1	100	9	109
2	131	18	149
3	104	8	112
4	132	16	148
5	81	10	91
6	13	3	16
Total	561	64	625

Statistics for Table of Age_Code by Activity_ Motorboating (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	3.5530	0.6154
Likelihood Ratio Chi-Square	5	3.4569	0.6299
Mantel-Haenszel Chi-Square	1	0.5427	0.4613
Phi Coefficient		0.0754	
Contingency Coefficient		0.0752	
Cramer's V		0.0754	

Table of Age_Code by Activity_Fishing

Age_Code	Activity_ Fishing		
Frequency	0	1	Total
1	55	54	109
2	77	72	149
3	56	56	112
4	83	65	148
5	51	40	91
6	10	6	16
Total	332	293	625

Statistics for Table of Age_Code by Activity_ Fishing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	2.2711	0.8105
Likelihood Ratio Chi-Square	5	2.2800	0.8092
Mantel-Haenszel Chi-Square	1	1.5862	0.2079
Phi Coefficient		0.0603	
Contingency Coefficient		0.0602	
Cramer's V		0.0603	

Table of Age_Code by Activity_Swimming Pool

Age_Code	Activity_ Swimming Pool		
Frequency	0	1	Total
1	34	75	109
2	44	105	149
3	30	82	112
4	60	88	148
5	42	49	91
6	9	7	16
Total	219	406	625

Statistics for Table of Age_Code by Activity_ Swimming Pool (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	16.1161	0.0065
Likelihood Ratio Chi-Square	5	15.9276	0.0071
Mantel-Haenszel Chi-Square	1	10.7501	0.0010
Phi Coefficient		0.1606	
Contingency Coefficient		0.1585	
Cramer's V		0.1606	

Age_Code	Activity_ Swimming Lake River		
Frequency	0	1	Total
1	62	47	109
2	94	55	149
3	76	36	112
4	115	33	148
5	79	12	91
6	15	1	16
Total	441	184	625

Table of Age_Code by Activity_Swimming Lake River

Statistics for Table of Age_Code by Activity_ Swimming Lake River (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	33.5675	<.0001
Likelihood Ratio Chi-Square	5	36.1133	<.0001
Mantel-Haenszel Chi-Square	1	32.9555	<.0001
Phi Coefficient		0.2317	
Contingency Coefficient		0.2258	
Cramer's V		0.2317	

ACTIVITY ANALYSIS BY INCOME GROUP

Table of Income_Code by Activity_Canoeing

Income_Code	Activity_ Canoeing		
Frequency	0	1	Total
1	200	24	224
2	93	15	108
3	53	21	74
4	63	8	71
5	62	14	76
6	53	19	72
Total	524	101	625

Statistic	DF	Value	Prob
Chi-Square	5	20.5695	0.0010
Likelihood Ratio Chi-Square	5	19.3240	0.0017
Mantel-Haenszel Chi-Square	1	8.7907	0.0030
Phi Coefficient		0.1814	
Contingency Coefficient		0.1785	
Cramer's V		0.1814	

Table of Income_Code by Activity_Motorboating

Income_Code	Activity_Motorboating		
Frequency	0	1	Total
1	210	14	224
2	101	7	108
3	66	8	74
4	61	10	71
5	67	9	76
6	56	16	72
Total	561	64	625

Statistics for Table of Income_Code by Activity_ Motorboating (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	18.1665	0.0027
Likelihood Ratio Chi-Square	5	16.3351	0.0059
Mantel-Haenszel Chi-Square	1	15.2063	<.0001
Phi Coefficient		0.1705	
Contingency Coefficient		0.1681	
Cramer's V		0.1705	

Table of Income_Code by Activity_Fishing

Income_Code	Activity_ Fishing		
Frequency	0	1	Total
1	110	114	224
2	58	50	108
3	40	34	74
4	38	33	71
5	45	31	76
6	41	31	72
Total	332	293	625

Statistics for Table of Income_Code by Activity_ Fishing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	3.0487	0.6925
Likelihood Ratio Chi-Square	5	3.0559	0.6914
Mantel-Haenszel Chi-Square	1	2.4705	0.1160
Phi Coefficient		0.0698	
Contingency Coefficient		0.0697	
Cramer's V		0.0698	

Table of Income_Code by Activity_Swimming Pool

Income_Code	Activity_ Swimming Pool		
Frequency	0	1	Total
1	92	132	224
2	40	68	108
3	26	48	74
4	27	44	71
5	16	60	76
6	18	54	72
Total	219	406	625

Statistics for Table of Income_Code by Activity_ Swimming Pool (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	13.7690	0.0171
Likelihood Ratio Chi-Square	5	14.4263	0.0131
Mantel-Haenszel Chi-Square	1	10.7200	0.0011
Phi Coefficient		0.1484	
Contingency Coefficient		0.1468	
Cramer's V		0.1484	

Table of Income_Code by Activity_Swimming Lake River

Income_Code	Activity_ Swimming Lake River		
Frequency	0	1	Total
1	157	67	224
2	79	29	108
3	53	21	74
4	53	18	71
5	58	18	76
6	41	31	72
Total	441	184	625

Statistics for Table of Income_Code by Activity_ Swimming Lake River (n = 625)

Statistic	DF	Value	Prob
Chi-Square	5	8.6210	0.1252
Likelihood Ratio Chi-Square	5	8.2603	0.1425
Mantel-Haenszel Chi-Square	1	0.8155	0.3665
Phi Coefficient		0.1174	
Contingency Coefficient		0.1166	
Cramer's V		0.1174	

ACTIVITY ANALYSIS BY GENDER

Table of Gender_Code by Activity_Canoeing

Gender_Code	Activity_ Canoeing			Activity_ Canoeing		3
Frequency	0	1	Total			
Female	353	60	413			
Male	168	41	209			
Other	3	0	3			
Total	524	101	625			

Statistics for Table of Gender_Code by Activity_ Canoeing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	2	3.2341	0.1985
Likelihood Ratio Chi-Square	2	3.6411	0.1619
Mantel-Haenszel Chi-Square	1	1.9614	0.1614
Phi Coefficient		0.0719	
Contingency Coefficient		0.0717	
Cramer's V		0.0719	

Table of Gender_C	ode by Activity	y_Motorboating
-------------------	-----------------	----------------

Gender_Code	Activity_ Motorboating		
Frequency	0	1	Total
Female	373	40	413
Male	185	24	209
Other	3	0	3
Total	561	64	625

Statistics for Table of Gender_Code by Activity_ Motorboating (n = 625)

Statistic	DF	Value	Prob
Chi-Square	2	0.8320	0.6597
Likelihood Ratio Chi-Square	2	1.1283	0.5688
Mantel-Haenszel Chi-Square	1	0.2908	0.5897
Phi Coefficient		0.0365	
Contingency Coefficient		0.0365	
Cramer's V		0.0365	

Table	of	Gender	Code	by	Activity	Fishing
					/ _	- 0

Gender_Code	Activity_ Fishing						
Frequency	0	0 1					
Female	228	185	413				
Male	101	108	209				
Other	3	0	3				
Total	332	293	625				

Statistics for Table of Gender_Code by Activity_ Fishing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	2	5.2985	0.0707
Likelihood Ratio Chi-Square	2	6.4433	0.0399
Mantel-Haenszel Chi-Square	1	1.4166	0.2340
Phi Coefficient		0.0921	
Contingency Coefficient		0.0917	
Cramer's V		0.0921	

Table of Gender	_Code by	Activity_	Swimming	Pool
-----------------	----------	-----------	----------	------

Gender_Code	Activity_ Swimming Pool		
Frequency	0	1	Total
Female	149	264	413
Male	70	139	209
Other	0	3	3
Total	219	406	625

Statistics for Table of Gender_Code by Activity_ Swimming Pool (n = 625)

Statistic	DF	Value	Prob
Chi-Square	2	2.0333	0.3618
Likelihood Ratio Chi-Square	2	3.0042	0.2227
Mantel-Haenszel Chi-Square	1	0.8494	0.3567
Phi Coefficient		0.0570	
Contingency Coefficient		0.0569	
Cramer's V		0.0570	

Gender_Code	Activity_ Swimming Pool		
Frequency	0	1	Total
Female	290	123	413
Male	149	60	209
Other	2	1	3
Total	441	184	625

Table of Gender_Code by Activity_Swimming Lake River

Statistics for Table of Gender_Code by Activity_ Swimming Lake River (n = 625)

Statistic	DF	Value	Prob
Chi-Square	2	0.0990	0.9517
Likelihood Ratio Chi-Square	2	0.0987	0.9518
Mantel-Haenszel Chi-Square	1	0.0549	0.8147
Phi Coefficient		0.0126	
Contingency Coefficient		0.0126	
Cramer's V		0.0126	

ACTIVITY ANALYSIS BY PARENTAL STATUS

Table of Parent by Activity_Canoeing

Parent	Activity_ Canoeing				
Frequency	0 1				
No	329	63	392		
Yes	195	38	233		
Total	524	101	625		

Statistics for Table of Parent by Activity_ Canoeing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	1	0.0061	0.9378
Likelihood Ratio Chi-Square	1	0.0061	0.9378
Mantel-Haenszel Chi-Square	1	0.0000	1.0000
Phi Coefficient	1	0.0061	0.9379
Contingency Coefficient		0.0031	
Cramer's V		0.0031	

Table of Parent by Activity_Motorboating

Parent	Activity_ Motorboating		ing
Frequency	0	1	Total
No	355	37	392
Yes	206	27	233
Total	561	64	625

Statistics for Table of Parent by Activity_ Motorboating (n = 625)

Statistic	DF	Value	Prob
Chi-Square	1	0.7344	0.3915
Likelihood Ratio Chi-Square	1	0.7242	0.3948
Mantel-Haenszel Chi-Square	1	0.5192	0.4712
Phi Coefficient	1	0.7332	0.3918
Contingency Coefficient		0.0343	
Cramer's V		0.0343	

Table of Parent by Activity_Fishing

Parent	Activity_ Fishing		
Frequency	0	Total	
No	224	168	392
Yes	108	125	233
Total	332	293	625

Statistics for Table of Parent by Activity_ Fishing (n = 625)

Statistic	DF	Value	Prob
Chi-Square	1	6.8334	0.0089
Likelihood Ratio Chi-Square	1	6.8337	0.0089
Mantel-Haenszel Chi-Square	1	6.4069	0.0114
Phi Coefficient	1	6.8224	0.0090
Contingency Coefficient		0.1046	
Cramer's V		0.1040	

Table of Parent by Activity_Swimming Pool

Parent	Activity_ Swimming Pool			
Frequency	0	1	Total	
No	152	240	392	
Yes	67	166	233	
Total	219	406	625	

Activity Swimming Pool

Statistics for Table of Parent by Activity_ Swimming Pool (n = 625)

Statistic	DF	Value	Prob
Chi-Square	1	6.4461	0.0111
Likelihood Ratio Chi-Square	1	6.5393	0.0106
Mantel-Haenszel Chi-Square	1	6.0134	0.0142
Phi Coefficient	1	6.4358	0.0112
Contingency Coefficient		0.1016	
Cramer's V		0.1010	

Table of Parent by Activity_Swimming Lake River

Parent	Activity_ Swimming Lake River			
Frequency	0	1	Total	
No	289	103	392	
Yes	152	81	233	
Total	441	184	625	

Statistics for Table of Parent by Activity_ Swimming Lake River (n = 625)

Statistic	DF	Value	Prob
Chi-Square	1	5.0690	0.0244
Likelihood Ratio Chi-Square	1	5.0117	0.0252
Mantel-Haenszel Chi-Square	1	4.6686	0.0307
Phi Coefficient	1	5.0609	0.0245
Contingency Coefficient		0.0901	
Cramer's V		0.0897	

APPENDIX 2: REGRESSION ANALYSIS RESULTS FOR MILES TRAVELED AND DAYS INVOLVED IN ACTIVITIES

MILES TRAVELED

Variable/Activity	Canoeing/ Kayaking	Motorboating	Fishing	Swimming in an Outdoor Pool
Constant	-47.207	7.862	14.826	18.194
	(-0.37)	(0.13)	(0.47)	(0.73)
Income	4.495	-17.99	2.668	1.362
	(0.39)	(-1.12)	(0.93)	(0.58)
Age	31.739	-9.805	0.48	11.752*
	(1.2)	(-0.70)	(0.12)	(1.79)
Gender	34.511	58.036*	3.386	-0.057
	(0.86)	(1.86)	(0.33)	(-0.00)
Parent	-56.458	-41.663	-2.441	-21.637**
	(-1.03)	(-0.88)	(-0.30)	(-2.35)
County	2.496	10.075**	0.149	-1.227
	(0.73)	(2.07)	(0.21)	(-1.57)
Adjusted R2	0.065	0.191	0.005	0.031
F	0.354	1.734	0.306	1.282
Variable/Activity	Swimming in a Lake or River	Miles Day Trip	Miles Overnight Trip	Furthest Miles
Constant	64.798	49.043***	39.399*	75.431
	(1.29)	(3.41)	(1.9)	(1.6)
Income	6.496	1.976*	10.379***	14.304*
	(1.14)	(1.95)	(4.43)	(1.93)
Age	-10.922	-1.131	3.516	-1.624
	(-1.32)	(-0.68)	(0.94)	(-0.16)
Gender	-18.088	-4.443	4.786	38.22
	(-0.60)	(-0.93)	(0.54)	(0.88)
Parent	2.985	1.479	-2.081	-25.856
	(0.11)	(0.37)	(-0.26)	(-0.92)
County	0.823	-0.327	0.121	2.284
	(0.67)	(-0.77)	(0.17)	(1)
Adjusted R2	0.01	0.009	0.036	0.011

Notes: The top line for each variable in rows is the linear regression coefficient. The second line is the t-test statistic for significant relationships. *** - p<.001 (statistically significant at the 0.1% level of significance, ** - p<.01, * - p<.05.

Variable/ Activity	Canoeing/ Kayaking	Motorboating	Fishing	Swimming in an Outdoor Pool	Swimming in a Lake or River
Income	0.029	0.273	0.162*	0.196***	0.117
	(0.13)	(0.14)	(0.07)	(0.05)	(0.08)
Age	0.207	0.045	0.025	-0.110	0.005
	(0.2)	(0.17)	(0.08)	(-0.07)	(0.11)
Parent	1.153**	0.179	0.438	0.684***	0.514
	(0.41)	(0.46)	(0.23)	(0.19)	(0.29)
Gender	-0.437	0.162	-0.971***	-0.143	0.636*
	(-0.42)	(0.51)	(-0.24)	(-0.19)	(0.31)
County	-0.014	-0.044	-0.007	-0.026	-0.006
	(-0.03)	(-0.04)	(-0.02)	(-0.02)	(-0.02)
Pseudo R ²	0.055	0.031	0.041	0.030	0.023
χ ²	10.992	4.019	27.378***	27.536***	10.666

DAYS INVOLVED

APPENDIX 3: VISITOR AND REQUIRED ACREAGE CALCULATIONS

SAILING

Step in Calculation	Calculation		
Base Probability		0.0192	
Adjust for Significant Variables			
Not Go Adjustment			
Doesn't Go	0.9808		
Thinks Unavailable	0.209		
Probability of Going	0.0192	0.0039	
Analysis of 40 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of Column C above)			
	0.0231	421,275	9,747
Probability to 50 miles	0.0000		0
Total Expected Annual Trips			9,747
Adjust for # People			
Median - 2 - same boat			0
Total Expected Number of Boats			9,747
Adjust for Wanting to Go More Often			
Wants to go more often	0.8333		
Thinks Unavailable	0.3333		
Probability of Going	0.0192		
Number of Extra Trips	2		104
Total Adjusted Number of Boats			9,850
Calculate Peak Required Acreage			
Summer Peak	0.5385		5,304
Number of Days			92
Peak Average Boats per Day			58
Poisson Distribution 99th Percentile			76
Acreage Required	40	acres/boat	3,040

MOTORBOATING

Step in Calculation	Calculation		
Base Probability		0.1024	
Adjust for Significant Variables			
Not Go Adjustment		0.023	
Doesn't Go			
Thinks Unavailable	0.8976		
Probability of Going	0.1526		
Analysis of 40 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of Column C above)			
	0.1394	212,419	29,617
Probability to 50 miles	0.0415	337,476	14,016
Total Expected Annual Trips			43,633
Adjust for # People			
Median - 2 - same boat			0
Total Expected Number of Boats			43,633
Adjust for Wanting to Go More Often			
Wants to go more often	0.8438		
Thinks Unavailable	0.1176		
Probability of Going	0.1024		
Number of Extra Trips	2		887
Total Adjusted Number of Boats			44,519
Calculate Peak Required Acreage			
Summer Peak	0.5361		23,867
Number of Days			92
Peak Average Boats per Day			259
Poisson Distribution 99th Percentile			298
Acreage Required	50	acres/boat	14,900

BOARDING ACTIVITIES

Step in Calculation	Calculation		
Base Probability		0.048	
Adjust for Significant Variables			
Not Go Adjustment			
Doesn't Go	0.952		
Thinks Unavailable	0.1351		
Probability of Going	0.048	0.0062	
Analysis of 40 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of			
	0.0542	549,895	29,790
Probability to 50 miles	0.0000		0
Total Expected Annual Trips			29,790
Adjust for # People			
Median - 2 - same boat			44,685
Total Expected Number of Boats			74,474
Adjust for Wanting to Go More Often			
Wants to go more often	0.7667		
Thinks Unavailable	0.2286		
Probability of Going	0.048		
Number of Extra Trips	2		1,253
Total Adjusted Number of Boats			75,727
Calculate Peak Required Acreage			
Summer Peak	0.6585		49,867
Number of Days			92
Peak Average Boats per Day			542
Poisson Distribution 99th Percentile			597
Acreage Required	20	acres/boat	11,940

JET SKIING ACTIVITIES

Step in Calculation	Calculation		
Base Probability		0.0416	
Adjust for Significant Variables			
Not Go Adjustment			
Doesn't Go	0.9584		
Thinks Unavailable	0.1474		
Probability of Going	0.0416	0.0059	
Analysis of 40 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of Column C above)			
	0.0475	212,419	10,085
Probability to 50 miles	0.0089	271,744	2,419
Total Expected Annual Trips			12,504
Adjust for # People			
Median - 2 - same boat			25,008
Total Expected Number of Boats			37,512
Adjust for Wanting to Go More Often			
Wants to go more often	0.8462		
Thinks Unavailable	0.2		
Probability of Going	0.0416		
Number of Extra Trips	2		528
Total Adjusted Number of Boats			38,040
Calculate Peak Required Acreage			
Summer Peak	0.6765		25,734
Number of Days			92
Peak Average Boats per Day			280
Poisson Distribution 99th Percentile			319
Acreage Required	20	acres/boat	6,380
FISHING

Step in Calculation Calculation				
Base Probability		0.4688		
Adjust for Significant Variables				
Gender		0.0148		
Parent		-0.0083		
Not Go Adjustment				
Doesn't Go	0.5312			
Thinks Unavailable	0.1351			
Probability of Going	0.4688	0.0336		
Analysis of 15 mile median trip	Probability	Population	Total #	
Probability within median trip (Sum of				
	0.5089	192,675	98,060	
Probability to 50 miles	0.1742	357,220	62,214	
Total Expected Annual Trips			160,274	
Adjust for # People				
Median - 1 - same boat			0	
Total Expected Number of Boats			160,274	
Adjust for Wanting to Go More Often			-	
Wants to go more often	0.7808			
Thinks Unavailable	0.1586			
Probability of Going	0.4688			
Number of Extra Trips	2		18,609	
Total Adjusted Number of Boats			178,883	
Calculate Peak Required Acreage				
Summer Peak	0.427		76,383	
Number of Days			92	
Peak Average Boats per Day			830	
Poisson Distribution 99th Percentile			898	
Acreage Required	20	acres/boat	17,960	

SWIMMING IN AN OUTDOOR POOL

Step in Calculation		Calculation	
Base Probability		0.6496	
Adjust for Significant Variables			
Age		0	
Income		0.0440	
Parent		-0.0055	
Not Go Adjustment			
Doesn't Go	0.3504		
Thinks Unavailable	0.1319		
Probability of Going	0.6496	0.0300	
Probability of Swimming		0.7181	
Adjust for Imperfect Substitute	0.2931	0.2105	
Analysis of 5 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of			
	0.2105	120,305	25,321
Probability to 50 miles	0.0858	429,560	36,844
Total Expected Annual Trips			62,165
Adjust for # People			
Median - 3 - 3 additional people			186,494
Total Expected Number of People			248,659
Adjust for Wanting to Go More Often			
Wants to go more often	0.8144		
Thinks Unavailable	0.1642		
Probability of Going	0.6496		
Number of Extra Trips	2		43,201
Total Adjusted Number of People			291,860
Calculate Peak Required Acreage			
Summer Peak	0.7148		208,622
Number of Days			92
Peak Average Swimmers per Day			2,268
Poisson Distribution 99th Percentile			2,379
Acreage Required	0.18	acres/swimmer	428

SWIMMING IN A LAKE OR RIVER

Step in Calculation			
Base Probability		0.2944	
Adjust for Significant Variables			
Age		0.0000	
Parent		-0.0016	
Not Go Adjustment			
Doesn't Go	0.7056		
Thinks Unavailable	0.2072		
Probability of Going	0.2944	0.0430	
Analysis of 15 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of			
	0.3359	192,675	64,712
Probability to 50 miles	0.1150	357,220	41,066
Total Expected Annual Trips			105,778
Adjust for # People			
Median - 3 - 3 additional people			317,334
Total Expected Number of People			423,112
Adjust for Wanting to Go More Often			
Wants to go more often	0.7228		
Thinks Unavailable	0.2188		
Probability of Going	0.2944		
Number of Extra Trips	2		39,399
Total Adjusted Number of People			462,511
Calculate Peak Required Acreage			
Summer Peak	0.7679		355,162
Number of Days			92
Peak Average People per Day			3,860
Poisson Distribution 99th Percentile			4,006
Acreage Required	0.18	acres/swimmer	721

WATERFOWL HUNTING

Step in Calculation Calculation			
Base Probability		0.0192	
Adjust for Significant Variables			
Not Go Adjustment			
Doesn't Go	0.9808		
Thinks Unavailable	0.2029		
Probability of Going	0.0192	0.0038	
Analysis of 20 mile median trip	Probability	Population	Total #
Probability within median trip (Sum of Column C above)			
	0.0230	212,419	4,890
Probability to 50 miles	0.0086	271,744	2,346
Total Expected Annual Trips			7,236
Adjust for # People			
Median - 1 - 1 additional hunter			7,236
Total Expected Number of Hunters			14,472
Adjust for Wanting to Go More Often			
Wants to go more often	0.9167		
Thinks Unavailable	0		
Probability of Going	0.0192		
Number of Extra Trips	2		0
Total Adjusted Number of Hunters			14,472
Calculate Peak Required Acreage			
Fall/Winter Peak	0.4167		6,030
Number of Days			90
Peak Average Hunters per Day			67
Poisson Distribution 99th Percentile			87
Acreage Required	18	acres/hunter	1,566